New work on the arxiv: "Network reconstruction and community detection from dynamics",

I show how coupling Bayesian network reconstruction from functional behavior with community detection enhances both tasks simultaneously.

Just out on PRX: "Reconstructing Networks with Unknown and Heterogeneous Errors"

New method can reconstruct networks and provide error estimates for them, even when measurement uncertainties are unknown.

Code is available as part of graph-tool: :gt:

The documentation for the reconstruction code is here:

Each integer is represented in a high-dimensional space, and gets squished down to 2D so that numbers with similar prime factorisations are closer together than those with dissimilar factorisations.


Finally on the arXiv: "Reconstructing networks with unknown and heterogeneous errors"

Did you know you can reconstruct and make error estimates for networks, by making only a single noisy measurement?

Mastodon @ is one server in the network